# Black-Box Policy Search with Probabilistic Programs

# Learning to learn by gradient descent by gradient descent

Abstract:

The move from hand-designed features to learned features in machine learning has been wildly successful. In spite of this, optimization algorithms are still designed by hand. In this paper we show how the design of an optimization algorithm can be cast as a learning problem, allowing the algorithm to learn to exploit structure in the problems of interest in an automatic way. Our learned algorithms, implemented by LSTMs, outperform generic, hand-designed competitors on the tasks for which they are trained, and also generalize well to new tasks with similar structure. We demonstrate this on a number of tasks, including simple convex problems, training neural networks, and styling images with neural art.

Full text: https://arxiv.org/abs/1606.04474

# Strategic Attentive Writer for Learning Macro-Actions

Abstract:

We present a novel deep recurrent neural network architecture that learns to build implicit plans in an end-to-end manner by purely interacting with an environment in reinforcement learning setting. The network builds an internal plan, which is continuously updated upon observation of the next input from the environment. It can also partition this internal representation into contiguous sub- sequences by learning for how long the plan can be committed to – i.e. followed without re-planing. Combining these properties, the proposed model, dubbed STRategic Attentive Writer (STRAW) can learn high-level, temporally abstracted macro- actions of varying lengths that are solely learnt from data without any prior information. These macro-actions enable both structured exploration and economic computation. We experimentally demonstrate that STRAW delivers strong improvements on several ATARI games by employing temporally extended planning strategies (e.g. Ms. Pacman and Frostbite). It is at the same time a general algorithm that can be applied on any sequence data. To that end, we also show that when trained on text prediction task, STRAW naturally predicts frequent n-grams (instead of macro-actions), demonstrating the generality of the approach.

Full text: https://arxiv.org/abs/1606.04695

# Unifying Count-Based Exploration and Intrinsic Motivation

Abstract:

We consider an agent’s uncertainty about its environment and the problem of generalizing this uncertainty across observations. Specifically, we focus on the problem of exploration in non-tabular reinforcement learning. Drawing inspiration from the intrinsic motivation literature, we use sequential density models to measure uncertainty, and propose a novel algorithm for deriving a pseudo-count from an arbitrary sequential density model. This technique enables us to generalize count-based exploration algorithms to the non-tabular case. We apply our ideas to Atari 2600 games, providing sensible pseudo-counts from raw pixels. We transform these pseudo-counts into intrinsic rewards and obtain significantly improved exploration in a number of hard games, including the infamously difficult MONTEZUMA’S REVENGE.

Full text: https://arxiv.org/pdf/1606.01868v1.pdf

# Alternating Optimisation and Quadrature for Robust Reinforcement Learning

Abstract:

Bayesian optimisation has been successfully applied to a variety of reinforcement learning problems. However, the traditional approach for learning optimal policies in simulators does not utilise the opportunity to improve learning by adjusting certain environment variables – state features that are randomly determined by the environment in a physical setting but are controllable in a simulator. This paper considers the problem of finding an optimal policy while taking into account the impact of environment variables. We present the alternating optimisation and quadrature algorithm which uses Bayesian optimisation and Bayesian quadrature to address such settings and is robust to the presence of significant rare events, which may not be observable under random sampling but have a considerable impact on determining the optimal policy. Our experimental results show that our approach learns better and faster than existing methods.

Full text: http://arxiv.org/abs/1605.07496

# Learning to Communicate with Deep Multi-Agent Reinforcement Learning

Abstract:

We consider the problem of multiple agents sensing and acting in environments with the goal of maximising their shared utility. In these environments, agents must learn communication protocols in order to share information that is needed to solve the tasks. By embracing deep neural networks, we are able to demonstrate end- to-end learning of protocols in complex environments inspired by communication riddles and multi-agent computer vision problems with partial observability. We propose two approaches for learning in these domains: Reinforced Inter-Agent Learning (RIAL) and Differentiable Inter-Agent Learning (DIAL). The former uses deep Q-learning, while the latter exploits the fact that, during learning, agents can propagate error derivatives through (noisy) communication channels. Hence, this approach uses centralised learning but decentralised execution. Our experiments introduce new environments for studying the learning of communication protocols and present a set of engineering innovations that are essential for success in these domains.

Full text: https://arxiv.org/abs/1605.06676

# Sequence Level Training with Recurrent Neural Networks

Abstract:

Many natural language processing applications use language models to generate text. These models are typically trained to predict the next word in a sequence, given the previous words and some context such as an image. However, at test time the model is expected to generate the entire sequence from scratch. This discrepancy makes generation brittle, as errors may accumulate along the way. We address this issue by proposing a novel sequence level training algorithm that directly optimizes the metric used at test time, such as BLEU or ROUGE. On three different tasks, our approach outperforms several strong baselines for greedy generation. The method is also competitive when these baselines employ beam search, while being several times faster.

Full text: https://research.facebook.com/publications/sequence-level-training-with-recurrent-neural-networks/

# One-Shot Generalization in Deep Generative Models

Abstract:

Humans have an impressive ability to reason about new concepts and experiences from just a single example. In particular, humans have an ability for one-shot generalization: an ability to encounter a new concept, understand its structure, and then be able to generate compelling alternative variations of the concept. We develop machine learning systems with this important capacity by developing new deep generative models, models that combine the representational power of deep learning with the inferential power of Bayesian reasoning. We develop a class of sequential generative models that are built on the principles of feedback and attention. These two characteristics lead to generative models that are among the state-of-the art in density estimation and image generation. We demonstrate the one-shot generalization ability of our models using three tasks: unconditional sampling, generating new exemplars of a given concept, and generating new exemplars of a family of concepts. In all cases our models are able to generate compelling and diverse samples—having seen new examples just once—providing an important class of general-purpose models for one-shot machine learning.

Full text: http://arxiv.org/abs/1603.05106

# Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation

Abstract:

Learning goal-directed behavior in environments with sparse feedback is a major challenge for reinforcement learning algorithms. The primary difficulty arises due to insufficient exploration, resulting in an agent being unable to learn robust value functions. Intrinsically motivated agents can explore new behavior for its own sake rather than to directly solve problems. Such intrinsic behaviors could eventually help the agent solve tasks posed by the environment. We present hierarchical-DQN (h-DQN), a framework to integrate hierarchical value functions, operating at different temporal scales, with intrinsically motivated deep reinforcement learning. A top-level value function learns a policy over intrinsic goals, and a lower-level function learns a policy over atomic actions to satisfy the given goals. h-DQN allows for flexible goal specifications, such as functions over entities and relations. This provides an efficient space for exploration in complicated environments. We demonstrate the strength of our approach on two problems with very sparse, delayed feedback: (1) a complex discrete MDP with stochastic transitions, and (2) the classic ATARI game `Montezuma’s Revenge’.

Full Text: http://arxiv.org/abs/1604.06057