WaveNet: A Generative Model for Raw Audio

Abstract:
This paper introduces WaveNet, a deep neural network for generating raw audio waveforms. The model is fully probabilistic and autoregressive, with the predictive distribution for each audio sample conditioned on all previous ones; nonetheless we show that it can be efficiently trained on data with tens of thousands of samples per second of audio. When applied to text-to-speech, it yields state-of-the-art performance, with human listeners rating it as significantly more natural sounding than the best parametric and concatenative systems for both English and Mandarin. A single WaveNet can capture the characteristics of many different speakers with equal fidelity, and can switch between them by conditioning on the speaker identity. When trained to model music, we find that it generates novel and often highly realistic musical fragments. We also show that it can be employed as a discriminative model, returning promising results for phoneme recognition.
 

True Online Temporal-Difference Learning

Abstract:
The temporal-difference methods TD(λ) and Sarsa(λ) form a core part of modern reinforcement learning. Their appeal comes from their good performance, low computational cost, and their simple interpretation, given by their forward view. Recently, new versions of these methods were introduced, called true online TD(λ) and true online Sarsa(λ), respectively (van Seijen & Sutton, 2014). Algorithmically, these true online methods only make two small changes to the update rules of the regular methods, and the extra computational cost is negligible in most cases. However, they follow the ideas underlying the forward view much more closely. In particular, they maintain an exact equivalence with the forward view at all times, whereas the traditional versions only approximate it for small step-sizes. We hypothesize that these true online methods not only have better theoretical properties, but also dominate the regular methods empirically. In this article, we put this hypothesis to the test by performing an extensive empirical comparison. Specifically, we compare the performance of true online TD(λ)/Sarsa(λ) with regular TD(λ)/Sarsa(λ) on random MRPs, a real-world myoelectric prosthetic arm, and a domain from the Arcade Learning Environment. We use linear function approximation with tabular, binary, and non-binary features. Our results suggest that the true online methods indeed dominate the regular methods. Across all domains/representations the learning speed of the true online methods are often better, but never worse than that of the regular methods. An additional advantage is that no choice between traces has to be made for the true online methods. Besides the empirical results, we provide an in-dept analysis of the theory behind true online temporal-difference learning. In addition, we show that new true online temporal-difference methods can be derived by making changes to the online forward view and then rewriting the update equations.