Opponent Modeling in Deep Reinforcement Learning

Opponent modeling is necessary in multi-agent settings where secondary agents with competing goals also adapt their strategies, yet it remains challenging because strategies interact with each other and change. Most previous work focuses on developing probabilistic models or parameterized strategies for specific applications. Inspired by the recent success of deep reinforcement learning, we present neural-based models that jointly learn a policy and the behavior of opponents. Instead of explicitly predicting the opponent’s action, we encode observation of the opponents into a deep Q-Network (DQN); however, we retain explicit modeling (if desired) using multitasking. By using a Mixture-of-Experts architecture, our model automatically discovers different strategy patterns of opponents without extra supervision. We evaluate our models on a simulated soccer game and a popular trivia game, showing superior performance over DQN and its variants.

Full text: http://jmlr.org/proceedings/papers/v48/he16.pdf

Gradient Estimation Using Stochastic Computation Graphs

In a variety of problems originating in supervised, unsupervised, and reinforcement learning, the loss function is defined by an expectation over a collection of random variables, which might be part of a probabilistic model or the external world. Estimating the gradient of this loss function, using samples, lies at the core of gradient-based learning algorithms for these problems. We introduce the formalism of stochastic computation graphs—directed acyclic graphs that include both deterministic functions and conditional probability distributions—and describe how to easily and automatically derive an unbiased estimator of the loss function’s gradient. The resulting algorithm for computing the gradient estimator is a simple modification of the standard backpropagation algorithm. The generic scheme we propose unifies estimators derived in variety of prior work, along with variance-reduction techniques therein. It could assist researchers in developing intricate models involving a combination of stochastic and deterministic operations, enabling, for example, attention, memory, and control actions.

Full text: http://arxiv.org/abs/1506.05254